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Abstract: The Charon toolkit for piecemeal development of high-efficiency parallel pro-
grams for scientific computing is described. The portable toolkit, callable from C and For-
tran, provides flexible domain decompositions and high-level distributed constructs for easy
translation of serial legacy code or design to distributed environments. Gradual tuning
can subsequently be applied to obtain high performance, possibly by using explicit message
passing. Charon also features general structured communications that support stencil-based
computations with complex recurrences. Through the separation of partitioning and distri-
bution, the toolkit can also be used for blocking of uni-processor code, and for debugging
of parallel algorithms on serial machines. An elaborate review of recent parallelization aids
is presented to highlight the need for a toolkit like Charon. Some performance results of
parallelizing the NAS Parallel Benchmark SP program using Charon are given, showing good
scalability.

1 Introduction

Writing message-passing codes is a tedious task for all but the simplest applications. Other
parallelization tools are (becoming) available, such as compiler directives for (virtual) shared-
memory systems, and parallelizing compilers like SUIF [27], and the commercial products
KAP and FORGE Explorer, but these are usually not up to the task of large scale paral-
lelization. High Performance Fortran (HPF) [33] holds the promise of efficient parallelization
of certain classes of problems, but the language lacks expressivity in general (see Section 2),
and writing efficient HPF compilers has proven to be a daunting task (for a recent evaluation
of HPF compilers, see [38]). For the majority of large-scale scientific applications message
passing is still the method of choice.

The advantages of message passing are clear. The user has complete control over exploita-
tion of concurrency and distribution of data. The separate processor address spaces and the
explicit message passing calls provide a simple programming model. They also enable tun-
ing, since the often costly communications are completely managed by the programmer. The
major disadvantage, contrary to common belief, is not the bookkeeping associated with the
placement of message-passing calls. In a typical application the fraction of lines of program
text involving communications is small. What makes message passing truly cumbersome
in most scientific computing programs is the explicit management of the domain decompo-
sition, i.e. the restriction of data structures and operations to individual processors’. The
processor sees only a small ‘window’ of the entire distributed data structure. Moreover,
message-passing programs cannot be developed gradually from a serial code. Domain de-
compositions are all-pervasive, and the entire program must be converted all at once. This
puts message-passing at a distinct disadvantage compared to the shared-memory paradigm,

TWe speak mostly of processors in this paper, although sometimes processes would be more appropriate.
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which allows piecemeal conversion of legacy code through parallelizing directives.

Charon offers a vehicle for easy development of efficient message-passing programs. It is a
toolkit that aids engineers in parallelizing scientific programs for structured-grid applications.
Both legacy code conversion and development from scratch are supported. Charon provides
a small library of functions that create, manipulate, and interrogate domain decompositions
and the distributed variables defined on them. Charon is also portable, requiring no special
operating system or hardware support; it is programmed in ANSI C, is callable from Fortran
and C, and is built on the de facto message-passing standard MPI [45].

Emphasis within this project is on rapid program development and debugging, and sub-
sequent piecemeal performance tuning. To support this approach, functions that manipulate
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Figure 1: Charon software structure

distributed variables are provided at three levels of abstraction, as depicted in Figure 1. The
highest level is the simplest to use, but also the least efficient. It is a device that emu-
lates serial program execution on distributed data. Salient features are a simulated single
program counter, application of the owner-computes rule, and automatic synchronization.
Strict sequential consistency in the sense of Lamport [36] is guaranteed. The sole purpose is
to distribute the data without any change in program structure. Invocation of the Charon
library at this level is the first stage in the parallelization of a user program.

The intermediate level is still easy to use, but more efficient. It consists of a collection of
communication routines, augmented with functions that control granularity, synchronization,
and concurrency, and that allow relaxation of the owner-computes rule. Indexing of array
variables is global, so the image of (distributed) shared memory is retained.

The lowest level of abstraction involves local indexing of variables, i.e. direct local memory
access without library intervention, and (possibly) explicit message passing; it offers the
highest efficiency. Calls at all three levels can be freely mixed, allowing a gradual transition
from low to high efficiency and a peaceful coexistence of paradigms.

Charon is intended for difficult structured-grid problems. It offers support for numerical



methods that involve recurrences that cannot be expressed in a data-parallel way. It also
provides very general, possibly dynamic, domain decompositions. Problems that do not need
this flexibility—most notably explicit methods, which exhibit natural data parallelism—may
be more easily solved using some of the systems described in Section 2, such as KeLLP [19],
OVERTURE [9], or PETSc [5]. Yet even for such problems the Charon approach offers
advantages, because of the control the user has over data lay-out (e.g. array padding or
index interchange to improve cache utilization, reuse of workspace) and communications.

The remainder of this paper is organized as follows. In Section 2 an extensive overview
is given of previously published parallel programming paradigms and development environ-
ments. Their limitations are discussed, from which follows the need for a library like Charon.
Section 3 presents the philosophy behind the Charon design. In Section 4 we describe the
Charon data distribution and manipulation facilities. Subsequently, in Section 5, we ex-
plain the library functions that provide parallel execution support at the highest level of
abstraction. In Section 6 we show how to apply the distribution and high- and mid-level ex-
ecution support functions to distribute and parallelize programs. For this we choose a very
simple example, programmed in C, based on the NAS Parallel Benchmarks (NPB) Block
Tri-diagonal problem, and also the full NPB Scalar Penta-diagonal benchmark program [4],
coded in Fortran. For the latter we also show actual performance results. We conclude this
section with practical tips for easy code conversion. Finally, in Section 7, we outline the
work remaining to complete the library.

2 Survey of related projects

We restrict our investigation to scientific-computing problems that are best solved using
domain decomposition. We specifically target the solution of multi-dimensional-array based
problems on distributed-memory multi-computers. There are several ways in which paral-
lelization aids can be classified. Here we adopt the following two simple categorizations:

e threads, tasks, or (virtual) processes can be either named or nameless. A task is
nameless if it cannot ask for its ID. If the tasks are named, communications between
them can be implicit or explicit.

e the domain decomposition can be implicit or explicit. If the domain decomposition is
explicit, there is the possibility (but not the necessity) that the physical data distribu-
tion is also explicitly known.

If tasks are nameless and the domain decomposition is implicit, all the user can do is
indicate which program segments can be executed in parallel; interaction is limited to giving
hints regarding concurrency. Spawning and joining of parallel tasks is performed by the
system, often on a loop-by-loop basis. Since the user does not know which statements are
executed by which processor, nor where data resides, this kind of parallelization aid gives
an image of shared memory. Vectorization and multi-tasking compiler directives defined
by Cray Research [55], and parallelization directives defined by Advanced Parallel Research
(FORGE) [54], Silicon Graphics (MIPSpro Power Fortran (X3H5 compliant) and C (pragma-
based directives)), and in the draft report by the defunct Parallel Computing Forum X3H5
committee fit this description. These directives have the form of structured comments, and
are ignored by non-parallelizing compilers. If no directives are given, some parallelization or



vectorization may still occur if the source code is simple enough to be analyzed by the com-
piler. Depending on the level of sophistication of the compiler, interprocedural dependency
analysis may discover coarse-grain parallelism [54, 27]. Completely automatic parallelization
is obtained by compilers such as SUIF [27] and KAP by Kuck and Associates.

The advantage of these tools is that they allow quick parallelization of legacy codes. Fi-
ther nothing needs to be done at all, or only some structured comments are inserted. How-
ever, the disadvantages are several. In the case of a non-uniform memory access (NUMA)
computer, the lack of control over data placement can lead to severe performance degrada-
tion. In many scientific computing programs there is not a single optimal data distribution
for the entire code. A user can select a reasonable compromise. But an automatically gen-
erated decomposition can be extremely poor for certain parts of the program, leading to
frequent remote memory accesses and/or page migrations. The problem with nameless tasks
is insufficient expressibility of parallelism. At best, the user can specify that a program
structure—typically a loop—can be executed in parallel (e.g. X3H5’s C§PAR PARALLEL DO).
At worst, there is no control at all, and the compiler may extract parallelism at the wrong
level of granularity. Interprocedural analysis may help, but has its limitations, since not all
dependencies can be resolved at compile time [26]. Regarding the lack of expressivity of
parallelizing compilers, one of the most useful control structures in parallel programming,
the pipeline, cannot be expressed without named tasks. The only directives allowed indicate
data parallelism.

In certain Distributed Shared Memory (DSM) systems concurrent task ID’s are avail-
able, either through intrinsic function calls, or through parameters passed by the user when
spawning a task. Examples are Treadmarks [2], Cilk [52], Cashmere [46], Munin [12], Ivy
[37], and Shasta [42]. The recently announced OPEN-MP standard, endorsed by a number
of vendors, tries to unify existing DSM application programmer interfaces. The main differ-
ence between the DSMs is in the type of memory consistency offered, and in the support for
hardware shared memory within a single node of an interconnection network (Shasta and
Cashmere). While it is possible to code complex parallel constructs using the task ID, the
lack of information on where data actually resides puts performance in jeopardy. In some
systems pages are assigned to a ’home’ processor by the system once and for all, while in
others some limited redistribution may take place. This may cause mismatches between data
placement and task execution in the case of nontrivial and/or dynamic data dependencies.

But making the domain decomposition explicit is not always sufficient. HPF [33] and
the related projects HPC++ [32], Vienna Fortran [14], C* [35, pp. 450-459], Annai [16], CM
Fortran [53], PC++/Sage++ [23], Fortran D [22] (augmented with the CHAOS runtime
support procedures [40]), Mentat [24], the explicit parallel Fortran syntax bindings from the
draft X3H5 document, etc., allow the user to specify or to suggest how to distribute the
data. But they do not provide control structures to express parallelism explicitly beyond the
PARALLEL DO (X3H5), FORALL and INDEPENDENT (HPF), or equivalent constructs. This is
because the tasks are nameless; even though a group of (virtual) tasks exists, an individual
task cannot ask for its name.

Vienna Fortran, Annai and Fortran D fix some of the deficiencies of HPF, for example by
making more explicit which (virtual) processor executes what set of statements in a parallel
loop (through the ON clause in Fortran D and Vienna Fortran), by providing more general
data distributions (through the BLOCK_GENERAL distribution in Annai’s Parallelization Sup-
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port Tool (PST), and through user-defined mappings in Fortran D, Vienna Fortran, and
PST), by defaulting to private, rather than shared data structures (Fortran D, Annai), and
by offering reductions in parallel loops within the language, rather than through the awk-
ward EXTRINSIC(HPF_LOCAL) mechanism. But since these languages provide only implicit
(compiler-generated) communications, granularity is often unnecessarily fine, unless hand
tuning is applied [28]. Moreover, the programs are strictly SPMD, and shared data types
are distributed over the entire processor set. SAGE, Mentat and HPC++ have the added
disadvantage that they require the use of C++, which is not the language of choice for most
numerical analysts. HPF, CM Fortran, C* and some other systems define virtual processors,
which are mapped to physical processors by the compiler. While this sometimes constitutes
a programming convenience, preventing the user from identifying processors for target data
distribution can severely degrade performance.

The problem with most of these parallelization tools is that they do not provide a mech-
anism to express task parallelism. All processors may ‘attack’ a FORALL construct in HPF,
but there is no way of assigning some processors to a certain task, while others proceed
with another. Only data parallelism can be expressed explicitly. The reason for this is
that explicit task parallelism requires placement by the user of communications between
interdependent tasks, something that tool writers have traditionally tried to avoid. All task
parallelism recognized by parallelizing compilers—and there are several that are capable of
extracting some—is implicit, and the communications are inferred. As an example we men-
tion the pipeline feature in the Fortran D compiler, which usually produces inefficient code
[28], because of the difficulty of automatically choosing the proper pipeline grouping factor.

Another package capable of resolving recurrences through pipelines is CAPTools [31],
which uses a dialogue with the user to parallelize legacy codes. CAPTools—Ilike Fortran
D and some of the proprietary and public domain HPF (pre-)compilers, for example the
ADAPTOR/Bouclettes system [8]—automatically detects certain common data dependen-
cies and inserts the proper control structures and message passing calls. The result is a
translated source text that can be edited for further tuning. But CAPTools still has some of
the limitations of most other parallelizing tools. Data distributions are essentially the same
as those of HPF (but without redistribution capabilities), the programming model is strictly
SPMD, and the quality of the parallel code produced depends on the capability of the un-
derlying dependency analysis engine to recognize complex data dependencies, as well as on
the judicious selection of the proper granularity. Forge Explorer [54] resembles CAPTools
in its capability to parallelize programs once the user has indicated interactively how data
should be distributed, but is more restricted in its domain decompositions (only one array
dimension may be partitioned), and, again, only data parallelism is supported.

Attempts to provide an expression mechanism for task parallelism include Fx [25], Shared
Data Abstractions (SDA’s) [13], Sisal [10], Fortran M [20], Split C [18], Linda [11], and the
HPF /MPI bindings defined by Foster et al. [21]. Split C provides complete expressibility of
task parallelism, but poor facilities for data distribution and little user support for manipu-
lation of shared data types (termed spread arrays). Fx and Fortran M, and to a lesser extent
SDA, the HPF/MPI bindings, Sisal, and Linda, are aimed at multi-disciplinary applications,
where certain disjoint tasks can be run concurrently. They set up explicit communications
mechanism (input and output mapping directives in Fx, MPI messages between distributed
objects in HPF/MPI, channels and ports in Fortran M, stacks in SDA, and objects in tu-



ple space in Linda) that can transfer information between these tasks. Fx, Fortran M and
HPF/MPI do so in a tightly coupled fashion, whereas Linda and SDA do not link sender and
receiver directly. Of those investigated here, Sisal is the only purely functional language. It
contains no explicit expression mechanism for concurrency. Rather, Sisal relies on the guar-
anteed absence of side effects in function calls and the language distinction between serial
and independent (data parallel) loops to derive parallel code.

The problem with the above approaches is that there is no good support for global
(shared) data types within the tasks. Just as in the ‘bare’ message-passing environment, the
user is responsible for interpreting the meaning of the parts of distributed data structures
(mostly arrays) owned by the individual processors when using Fx, Fortran M or Linda
(tags in Linda can help alleviate this problem, but creating and maintaining those is still
the programmer’s responsibility). SDA, Sisal and HPF/MPI do support data types globally
known to (sets of) tasks, but allow only data parallel or serialized operations on such data
types.

Apparently, the user must choose between either task parallelism and private, non-shared
data types, or data parallelism and shared data types. What we want is shared data types for
programming convenience—where sharing may be among a subset of the processors in the
system—and task parallelism for flexibility. One way of accomplishing this is encapsulation
through parallel libraries; tasks are issued as parallel, atomic tasks on globally defined,
shared data types, and the library implementation, which may involve task parallelism, is
hidden from the user. Opting for libraries represents a compromise, since no library can be
completely general-purpose. The art of the library designer consists of choosing a system
that is small enough that it can be mastered fairly easily, and large and flexible enough to
solve more than the particular problem for which it was invented. Some of the interesting
projects in this area are ScaLAPACK [7], KeLP [19], PETSc [5], OVERTURE 9], Global
Arrays toolkit [39], //ELLPACK [29], PINEAPL [34], PARTTI [47], DAME [17].

ScaLAPACK, part of the larger project “A Scalable Library for Numerical Linear Alge-
bra,” is a distributed-memory version of the linear-algebra library LAPACK. It allows ma-
trix distributions that are a subset of the HPF array distributions, namely two-dimensional
block-cyclic distributions. The library is built on top of lower-level serial (BLAS; Basic Lin-
ear Algebra Subprograms) and parallel (PBLAS; Parallel BLAS, and BLACS; Basic Linear
Algebra Communication Subprograms) libraries. The efficiency of the library derives from
the implementation of the fairly small set of machine-dependent routines of PBLAS and
BLACS. Those problems that can be cast completely as numerical linear-algebra problems
can be solved readily using ScaLAPACK, with almost the some ease—and a very similar
user interface—as in LAPACK.

Some other linear-algebra libraries available or currently being developed are: JTpack90
[48], Aztec [30], LINSOL [44], PLAPACK [1], PSPARSLIB [41], and the The Global Arrays
toolkit [39]. The latter targets dense matrix operations. It is different from all the other
libraries in that it allows both task parallelism and data parallelism, a property that Charon
also seeks to provide. Matrices are created and distributed in collective operations, but
methods that operate on the matrices can be collective (in the vein of PBLAS [7] operations)
as well as private (e.g. processor 1 may fetch a submatrix and perform an operation on it,
with all other processors idling, or engaging in other tasks). However, distributions are
limited to those in HPF, and are restricted to two-dimensional arrays.
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Unfortunately, numerical linear algebra problems are often embedded in larger appli-
cations, which may lead to distribution incompatibilities. Moreover, most structured-grid
applications do not construct system matrices explicitly, so they do not benefit from ScalLA-
PACK parallelization.

In addition to general-purpose linear-algebra libraries, a plethora of special-purpose par-
allel packages are being developed, some of which utilize the above linear-algebra libraries.
They derive their utility from their execution efficiency, combined with their ease of use.
However, most such libraries have specialized considerably, sacrificing generality and ex-
pandability for efficiency and simplicity.

@)

The Kernel Lattice Parallelism (KeLP [19]) project offers a convenient user interface
for the solution of partial differential equations using structured, adaptively-refined
grids. It provides functions for the creation, movement, reshaping and destruction
of the refinements. However, grids and refinement are limited to aligned, Cartesian
blocks. More seriously, KELP only provides coarse-level parallelism, and does not al-
low individual blocks to be further distributed among processors. Numerical operations
performed on blocks must be data-parallel. This restricts numerical methods to ex-
plicit schemes, Jacobi- or colored-Gauss-Seidel-type point-relaxation, or Krylov-based
solvers, all of which compute updates (or residuals, in the case of Krylov subspace
methods) on a pointwise basis.

The University of New Hampshire C* compiler [15] offers support for stencil compu-
tations on structured grids. Staging communications with neighboring processors in
the case of so-called box-shaped difference stencils (see below), as described, for exam-
ple, by Scherr [43], reduces the latency in massively parallel computations. However,
since the support is provided within the context of the C* language [35, pp. 450-459],
computations can only be performed in a data-parallel fashion.

OVERTURE [9] is a C++ library for solving partial differential equations on serial
and parallel computers. It provides a high-level specification and solution mechanism
for partial differential equations on (collections of overlapping) structured grids, with
provisions for adaptive refinement. OVERTURE contains procedures for stencil oper-
ations and a library of boundary conditions and integrators. Again, all operations are
specified as data-parallel grid functions.

//ELLPACK [29] offers three mechanisms for the parallel solution of PDE problems.
Two are based on legacy code coupling and suffer from serial bottlenecks. The third
approach is the only truly parallel problem solver in //ELLPACK, but it is limited to
templates describing elliptic equations.

The Parallel Automated Runtime Toolkit (PARTI [47]) at ICASE consists of two parts,
PARTI proper, and multiblock PARTI. PARTTI provides an interface to manipulate data
structures related to unstructured meshes and general sparse matrices. It employs the
celebrated inspector/executor model, in which loops over irregular data structures are
preprocessed to determine their remote data requirements, and the pertinent commu-
nications and calls to gather/scatter routines are automatically inserted. This model



assumes processors can execute their own segments of loops independently once remote
data is fetched. This restricts numerical methods to those expressible as data parallel
loops.

Multiblock PARTT accommodates sets of interfacing structured grids (“blocks”). Blocks
are assigned to sets of processors, and are updated independently, after which irregular
communication takes place to update interface values. Within blocks fine-grain par-
allelism may be exploited through the use of Fortran-D-conforming data distributions
and loops. Thus, multiblock PARTT extends the use of Fortran D by allowing task par-
allelism among the various blocks, but is restricted to the data parallelism expressible
in Fortran D within individual blocks.

DAME (DAta Migration Environment [17]) creates a homogeneous distributed virtual
machine with a regular virtual topology to the application programmer, hiding the
details of the irregularly connected, temporally and architecturally heterogeneous en-
vironment on which the application is actually run. Like the Global Arrays project
[39], it targets dense matrix operations. DAME also offers explicit index conversion
functions that translate global indices into local ones, and functions that extract from
a specified data domain the part contained in the address space of the calling node.
However, operations on distributed data sets are restricted to data parallel functions,
and distributions are restricted to 2-dimensional block decompositions.

The Parallel Industrial NumErical Applications and Portable Libraries (PINEAPL)
project [34], has created the NAG Parallel Library, which provides an extension of the
traditional NAG (Numerical Analysis Group) Fortran 77, Fortran 90, and C libraries.
Support for the solution of partial differential equations (PDEs) consists of templates
for the specification of (unstructured) grid and equation to be solved. Communica-
tion, which is shielded from the user, is based mainly on the BLACS [7] routines to
ensure portability and efficiency. While reported scalability is good [34], functionality
is rather limited due to the template nature of the library. In the PDE area only scalar
Helmholtz and Poisson solvers are provided at present.

The Portable, Extensible Toolkit for Scientific computation (PETSc [5]) is the most
extensive and versatile of the parallelization support packages available today. Rather
than providing a (necessarily restricted) template for the parallel formulation and solu-
tion of PDEs, it offers a set of functions for the creation, manipulation and destruction
of high level distributed data types, such as vectors and matrices, and a collection of
general-purpose linear and nonlinear equation solvers.

Like in the Global Arrays [39] project, distributed data types are created collectively,
but may be manipulated collectively (using, for example, PETSc vector routines) as
well as individually.

One-, two- and three-dimensional distributed arrays (DAs) are used to support struct-
ured-grid computations. Their elements can be accessed using global (i.e. with respect
to the global grid) or local (with respect to the local on-processor segment of the array)
indexing. Provisions are made for overlap zones (ghost points) that can act as buffers
for copies of data elements on geometrically neighboring processors. Elements of DAs,
like those of distributed vectors, can be set collectively and individually.



With the proper use of assembly routines it is possible, in principle, to program pipeline
control structures explicitly, with the advantage that the grouping factor is under user
control. However, PETSc allows only one type of distribution for its vectors and DAs,
namely blocking (i.e. uni-partitioning). There is no support for more advanced do-
main decompositions, such as multi-partitioning. Nor is there support for dynamic
decompositions, such as those required by transpose-based parallel algorithms. Fi-
nally, there are several other data accesses in DAs that are required in complex CFD
production codes and that are not supported in PETSc, such as fetches of data from
remote processors at points other than ghost points.

3 Charon design philosophy

Based on the survey of projects on parallelization aids for scientific computing in the previous
section, and on experience developing advanced parallel programs from scratch, we arrive at
the following basic design guidelines for Charon.

3.1 Requirements

1. Every control structure and data access expressible in a serial code should also be
expressible in a parallel code. Common control structures should be easy to express;

2. Domain decompositions should be flexible, potentially dynamic, and under complete
control of the user. Common domain decompositions should be easy to specify;

3. The user should always be able to get efficient access (i.e. without the need to copy)
to memory locations where the (distributed) data is actually stored,;

4. Programming in Charon should not have to be done exclusively through explicit func-
tion calls;

5. Converting a serial program or design to a parallel program should be easy;

6. Parallel I/O should be straightforward and efficient;

Criteria 1-4 are largely satisfied by the message-passing model, which we adopt for this
work. With its wide acceptance and proven efficiency on a large number of platforms, the
Message Passing Interface (MPI [45]) is the proper choice. Easy expressibility of common
control structures and domain decompositions requires a layer of functions on top of lower-
level constructs. Criterion 4 is a corollary to 1; in systems that force the programmer to use
library calls alone for accomplishing tasks, functionality is inherently limited, and too much
‘foreign language’ is required.? User control in the user’s language (mostly Fortran and C)
should be explicitly recognized and supported, not merely allowed. Criteria 5-6 are generally
at odds with the low-level functionality and data distribution support of the message-passing
model; flexibility and ease of use have been found incompatible in virtually all of the systems
surveyed in Section 2. This is because most systems provide only one level of programming

ZCompare ordering food in a French restaurant; an English speaking customer may be willing to learn a
few French words to order a special meal, but will cancel the reservation if the whole dinner conversation
has to be conducted in French as well.



support, which also needs to be efficient to qualify as a useful instrument. Charon’s design
includes a hierarchy of control structures, all of which have complete expressibility, but trade
ease of use against efficiency.

3.2 Conceptual design

Data distribution and parallel control are orthogonal design features of Charon; it is possi-
ble to distribute arrays making up the data structures of a program without touching the
sequential logic. i.e. without explicitly parallelizing it. Subsequent code modifications to
establish concurrent execution leave the distribution unchanged.

The problem is how to satisfy demand for data that is not local to the calling processor.
We will focus on loops over (parts of ) multi-dimensional arrays, since this is where most of the
work is done in scientific computing. In Charon there are three ways remote data demands
can be satisfied. They correspond roughly to the three levels of abstraction mentioned above,
and depicted in Figure 1.

1. Implicitly invoked communications.
Assignments are replaced by calls to the CHN_assign, CHN_address and CHN_value
functions (see Section 5), and Charon will make sure that the right values are stored in
the correct locations, regardless of data distribution. No code rearrangement or com-
munication calls are needed. It is generally very inefficient, but offers the convenience
of serial logic.

2. Structured Charon communications.

In scientific programs featuring stencil computations, remote data demands often in-
volve logically nearby processors and grid points. Such values can be fetched before a
loop is entered and cached in the locations where they are ‘expected’, i.e. at so-called
ghost or overlap points (see Section 4, CHN_copy(_ghost) faces_all)). This obviates
the need for the expensive implicitly invoked communications. The ghost points are
declared during array setup and are managed by the library, so no separately defined
user buffers are needed for copying. The other common structured communication is
equivalent to HPF’s redistribute, and is named similarly.

3. Unstructured Charon communications and MPI function calls.

When the remote data demands are not of the stencil type, the user will need to fetch
the data explicitly and store in and copy from private buffers. This requires a (partial)
recoding of the original operations to assimilate the foreign data. Since there is always
direct access to distributed data, regular MPI calls may be used for message passing.
Alternatively, Charon provides functions for copying Cartesian product subsets of dis-
tributed arrays to and from private buffers (CHN_get/put_tile; not further described
in this paper).

An example of a typical parallel program development process using Charon is shown in
Figure 2.

In the course of improving performance, high-level constructs will gradually be replaced
by mid- and low-level function calls. As a consequence, top-performing parallel codes derived
using Charon will often look very similar to message-passing codes, although many of the

10



Serial design/legagccode

Distribute grids)("Insert high—levi
and arrays Charon calls

Distributedserial code

Insert mid—leve
Charon calls

Y

Distributedconcurrent code

|
Insert MPI calls
(if necessary)

Highly opimized
distributed concuntcode

Figure 2: Sample parallelization flowchart

common manipulations will not have to be coded explicitly by the user, but will be provided
as tools in the toolkit. The important difference is that Charon codes will have been created
in a piecemeal fashion, with support for rapid prototyping and validation. I/O in scientific
computing is usually a data-parallel operation, and support for this can be provided easily
and transparently using the collective I/O operations defined in the recently announced
MPI 2 standard. These operations derive their efficiency from a reshuffle of fragmented data
among processors to increase granularity before actually accessing the storage device.

4 Distribution support tools
Charon supports the parallelization of programs using multi-dimensional arrays related to
structured grids. The data distribution process consists of three fundamental steps:

1. Define a grid and create a partitioning in cells using Cartesian sections (see below).
The result is a section data structure.

2. Assign cells to processors. The result is a decomposition data structure.

3. Create the multi-dimensional, distributed array and associate it with a decomposition

and local storage space. The result is a distribution data structure.

In the following description of Charon functions, the integer variables grid, section,
decomposition, and distribution (in typewriter font) are handles to the corresponding
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data structures. There are Fortran 77 and C bindings for all Charon functions; in this paper
we present mainly the C syntax.

o o
= =
. . 1 2 0
. . —— 2 0 1
cute=t=pelm gL koo e -
: : 0 1 2
y At Decompositn 2:
Cartesia sectn \ 3—processor mukipatition
6 7 8 2 2 3
3 4 5 0 0 3
0 1 2 0 1 1
Decompositiort.: Decomposion 3:
9-processor uni—pation 4-processor sillypartition

Figure 3: Cartesian section may define several different decompositions. Numbers inside cells
indicate processor ownership.

CHN_create_grid initializes a discretization grid of a certain dimensionality. CHN_set-
_grid_size and CHN_set_grid start specify the size and starting index of the grid in a
particular coordinate direction, respectively. The grid data structure and subsequent con-
structs based on it are defined only for the processors in the MPI [45] communicator specified
in CHN_create_grid (see page 13).

Structured-grid computations often involve stencil operations that require gathering data
from nearby points in the grid. Most useful domain decompositions assign contiguous blocks
of points to individual processors, which reduces the amount of communication necessary
to fetch nonlocal data. Such domain decompositions are conveniently defined in terms of
Cartesian sections. These are regular tessellations created by cutting the grid along coor-
dinate planes. In order to retain full flexibility, we separate the construction of Cartesian
sections from the assignment of grid blocks or cells to individual processors. The result of
the assignment process, the decomposition data structure, is fundamental to Charon. De-
compositions can be tailored to specific needs by modifying them after initialization. Figure
3 shows an example of how a Cartesian section of a two-dimensional grid is used to define
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several decompositions. All Charon functions are uniformly applicable to grids of any spatial
dimension, although not all are implemented efficiently for dimensionality higher than three.

CHN_create_section, CHN_set_num_cuts, and CHN_set_cut are used to initialize a section
based on a grid, to specify the number of cuts in a certain coordinate direction, and to define
the value of a particular cut (a cut value of n places a separator between grid points n — 1
and n), respectively. Alternatively, we may insert all cuts necessary to define a common
partitioning scheme in a single library call. The common decompositions currently sup-
ported by Charon are uni-partitioning (CHN set unipartition; each processor is assigned
a single cell), diagonal multi-partitioning (CHN_set multipartition; each processor is as-
signed several cells in a regular pattern [50]), and the degenerate so-called solo-partitioning
(CHN_set_solopartition; the grid is left undivided, regardless of the number of proces-
sors involved). While multi- and solo-partitioning are unambiguous, there are two different,
equally reasonable ways to determine a uni-partition decomposition, selected by the shape
parameter. The shape value DEFAULT_SHAPE will try to minimize surface areas of cells,
whereas the value EQUAL_CUTS will try to insert the same number of cuts in each coordinate
direction, regardless of grid aspect ratios. Charon also allows the user to specify that a cer-
tain dimension of the grid should not be partitioned (CHN exclude partition dimension,
for uni- and multi-partitioning only).

CHN_create_decomposition and CHN_set_owner initialize a decomposition based on a
certain section and fix ownership of a particular cell, respectively. Ownership is signified
by the rank of the processor within the MPI communicator specified in CHN create_grid.
Because grids can have different dimensionality, the number of indices needed to identify a cell
can vary. Whereas the CHN_set_owner routine suffices to construct any type of decomposition
(see, for example, Decomposition 3 in Figure 3), it is again preferable to assign cells for
common decompositions using a single library call (CHN_set_uni/multipartition_owners).
CHN_set_solopartition_owners assigns ownership of all the cells in a decomposition to a
single root processor. Before a decomposition can be used, the function CHN_commit_decom-
position must be called to complete the data structure.

Syntax of grid, section and decomposition functions:

int CHN_create_grid(int xgrid, MPI_Comm communicator, int num_dims) ;
int CHN_set_grid_size(int grid, int dir, int size);
int CHN_set_grid_start(int grid, int dir, int start_index);

int CHN_create_section(int *section, int grid);

int CHN_set_num_cuts(int section, int dir, int num_cuts);

int CHN_set_cut(int section, int dir, int cut_num, int cut_value);
int CHN_exclude_partition_dimension(int section, int dir);

int CHN_set_multi/solo/partition(int section);

int CHN_set_unipartition(int section, int shape);

int CHN_create_decomposition(int *decomposition, int section);
int CHN_set_cell_owner(int decomposition, int rank, int cell_num);
int CHN_set_uni/multipartition_owners(int decomposition);

int CHN_set_solopartition_owners(int decomposition, int root);
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int CHN_commit_decomposition(int decomposition);

Once a decomposition is formed, a distributed variables (distribution) can be asso-
ciated with it. CHN_create_distribution (see below) defines a distributed array of some
elementary data_type (MPI_INT, MPI_FLOAT, etc). The user also specifies the tensor rank
of the variable, plus an array of numbers of components for each index of the rank. For
example, setting rank equal to 2 and components equal to (3,3) defines a 3 x 3 matrix
at each point of the grid. To accommodate stencil operations the user specifies a nonnega-
tive number of ghost_points that form a border of overlap points (communication buffer)
around each cell.

Start_address refers to a range of memory locations reserved for storage of elements
of type data_type. In Fortran 77, the starting address is usually the beginning of a user
declared array. In C it can be the same, but it may also be NULL, and space can be
assigned to the distributed array later through CHN_ set_start_address. In either case, it
is user allocated space that is reserved. The distribution data structure simply provides a
structuring interpretation of space pointed to by the user. This makes it possible to operate
on distributed data in any way the programmer deems convenient, through Charon functions,
through plain Fortran or C, or—most often—both.

By default, all cells take up an equal amount of space. The layout is consistent with a
storage declaration that allocates to all cells subarrays of identical dimensions. This makes it
easy in both C and Fortran to declare a distributed variable of rank 7 on a grid of dimension
n as an (n + r + 1)-dimensional array, where one dimension is of the size of the number of
cells owned by each processor.

Complete control over memory usage is got by specifying explicitly where each cell ¢
starts in memory, relative to the global starting address (CHN_set_array_offset), and what
the subarray dimensions are (CHN_set_array dimension).

Syntax of distribution and layout functions:

int CHN_create_distribution(int *distribution, int decomposition,
MPI_Datatype data_type, void *start_address,
int rank, int *component, int ghost_points);

int CHN_set_array_offset(int distribution, int offset, int cell_num);

int CHN_set_array_dimension(int distribution, int dir, int subarray_size,
int cell_num);

All grid, section, decomposition and distribution creation and manipulation operations
are collective, which means that all processors in the corresponding communicator must
call these routines with the same parameters (except those that associate storage space on
individual processors). In addition to the above assignment and initialization routines, there
are also inquiry functions that interrogate the Charon variables, for example to find out the
number of a particular cell in the decomposition, or which processor owns a particular grid
point. These functions will be described as they are introduced in the examples below.

5 Execution support tools

At the highest level of abstraction, Charon presents a programmer interface that makes the
transition from a serial to a correct distributed implementation simple and straightforward.
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The user need not be concerned about details of the domain decomposition, local and remote
data, concurrency, communication, etc. These bookkeeping aspects are hidden. This is
generally inefficient, but that is not a problem. In subsequent refinements performance
improvements are obtained, again making use of Charon tools.

Charon does not provide automatic code conversion. All parallelization is carried out
by the user, who retains complete control over data lay-out and program flow. Hence,
the necessary code changes must be kept at a minimum. For that purpose Charon offers
execution support tools that simulate a single data space and a single thread of control.
Assignments and control structures are exact images of the serial program, and the resulting
code is executed by all processors; Charon simulates a single, replicated program counter.

We use the following rationale for the implementation. Each element of a distributed
variable is associated with a grid point, which has a unique owner processor. So it is
most natural—and often least expensive—to employ an owner-computes rule: whenever an
element of a distributed variable occurs on a left-hand side of an assignment, the processor
who owns it is responsible for its update. Since all processors execute the same code within
the same control structure, we have to provide a mechanism to skip assignments to nonlocal
memory locations; the replicated program counter ‘pauses’ on all processors, except on the
one executing the local assignment, and ‘resumes’ collectively immediately thereafter.

The implementation is as follows. Each assignment in the serial program is converted into
a call to CHN_assign, which takes as arguments a left hand side (an address) and a right hand
side (a value). If the address is NULL (not reachable), the assignment is effectively ignored
by the calling processor; it is masked. Masking is provided by the function CHN_address,
which returns an actual location for a local element of a distributed variable, and NULL
otherwise. Assignment masking alone, however, is not sufficient, since assembly of the right
hand side of the assignment may involve contributions from local as well as (possibly several)
remote memories. For this purpose the generic function CHN_value is introduced. It operates
on distributed variables and always returns the proper value, regardless of which processor
owns the donor point. Analogous to the common owner-computes rule for left hand sides of
assignments, we apply the owner-serves rule for the right hand side components, meaning
that the unique processor that owns a particular grid point is responsible for producing
values associated with the point upon request by CHN_value.

No distinction is made between values returned by the function CHN_value and values of
nondistributed variables and constants. All are rvalues in C terminology. Similarly, no dis-
tinction is made between addresses returned by the function CHN_address, and addresses of
nondistributed variables. Both are lvalues. In a correct program using only top-level Charon
tools, rvalues always exist, whereas lvalues are only defined if they are local. Alternatively,
we may say that the highest level of abstraction of Charon only offers (implicitly invoked)
remote gets, not puts.

Syntax of global access functions:

int CHN_assign(void *my_address, <type> my_value);
<type> CHN_value(int distribution, int index1, int index2, ...);
void *CHN_address(int distribution, int indexl, int index2, ...);

Note that the CHN_assign operator is overloaded; it can take values and addresses of any ele-
mentary type, as long as they are consistent (i.e., my_value and my_address must refer to the

15



same type). The generic function CHN_value specializes to CHN_float_value, CHN int value,
etc., depending on the type of the distributed variable. In addition, functions CHN_value
and CHN_address allow variable-length parameter lists so as to accommodate distributed
variables of differing dimensions and tensor ranks. This can be done safely in C and Fortran
90, but is not formally allowed in Fortran 77. However, most Fortran 77 compilers will do
the right thing, even when issuing warnings. Index1l, index2, ... are indices with respect
to the global grid. Observe that the return value of CHN_address is used functionally as an
Ivalue by Charon, which is not possible in Fortran.

For the above reasons, CHN_assign, CHN_value and CHN_address are all implemented in
C. However, they are callable from Fortran. Correctness (i.e. serial consistency) of a program
utilizing only these functions is easily shown, even though Charon makes no assumptions
about lock-step execution or other synchronization features of the runtime system, and
does not pose any restrictions on data dependencies in the program. Each invocation of
CHN_assign requires the cooperation of the processor that owns a referenced remote data
element. Because all processors execute the same code, any update of such referenced remote
data occurring logically before the value is requested must already have taken place before
the request is registered and satisfied; synchronization is performed automatically. This is
equivalent to realigning the replicated program counter.

A side effect of the cooperative nature of implicitly invoked communications is that they
must be issued as broadcast operations. A processor executing the CHN_value function must
take active part in sending data, but cannot know the recipient until my_address has been
evaluated. Both my_address and the expression involving CHN_value are arguments of the
CHN_assign function, and Fortran nor C semantics prescribe a unique evaluation order.
Hence, the rvalue may be evaluated before the destination address is known, which implies
that the rvalue be available to all processors in the communicator. A broadcast is required.
If the lvalue is not a distributed variable—in other words, if it is a global variable—the
CHN_address and CHN_assign functions are not used. Global variables are automatically
self-consistent, because each processor assigns the same (broadcast) value to its local copy.

CHN_assign, CHN_value, and CHN_address are sufficient, in principle, to move a serial
program based on structured grids into a distributed environment while retaining serial logic,
and these functions make up the bulk of Charon’s top-level distributed execution support.
Relaxation of the owner-computes and owner-serves rules and introduction of data-parallel
communications are the most important ingredients of mid-level parallel execution support.
These will be presented in the examples in the next section.

6 Tuning applications: two examples

Whereas the top level support functions distribute a code, they do not yield a truly parallel
program, since execution is effectively serialized. We will show, by way of two examples
based on the NAS Parallel Benchmarks II (NPB) program suite [4], how to obtain high
performance in a gradual fashion.

6.1 Tri-diagonal ADI

The first example is for illustrative purposes only. It is based on the NPB Block Tri-diagonal
(BT) problem [3], which defines an ADI (Alternating Direction Implicit) algorithm to solve
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a system of nonlinear partial differential equations on a 3D grid. We reduce the system to a
simple linear scalar equation on a 2D grid:

o0 _ o o 0
ot 0x2  Oy?

The interesting part of the ADI algorithm concerns the inversion of sets of banded tri-
diagonal matrices (so-called factors), since they involve recurrences in different coordinate
directions. There is one factor for each grid line, in each of the two coordinate directions.
Here is the C pseudo code for a single time step of the ADI algorithm.

for (each grid point) compute_residual(rhs,q); /* rhs: residual x/
for (dir=0; dir<2; dir++) invert_factor(lhs,rhs,dir); /* lhs: banded matx */
for (each grid point) update(q,rhs); /¥ q = q + rhs */

From now on we will use indices i and j for discrete coordinates in the z- and y-directions,
respectively. Updating the solution q is easiest, since it is an operation that is data parallel,
and that involves no difference operators. Assuming a square grid of size N? points (indexing
starts at 1), the serial update function

for (i=1; i<=N; i++) for (j=1; j<=N; j++) ql[il[j] += rhs[il[j]1;
is converted into:

for (i=1; i<=N; i++) for (j=1; j<=N; j++)
CHN_assign(CHN_address(q_,i,j),CHN_value(q_,i,j)+CHN_value(rhs_,i,j));

Here the array rhs, which originally contained the residual, has been overwritten with the
solution update vector. In the sequel we will use the notation X_ for the handle to the
distributed array X. It is based on the grid decomposition (produced by CHN create_decom-
position) whose handle is demp. For brevity we will only use the generic names of Charon
access functions. In C all Charon functions invoked for their side effects return an integer
error value, which can be ignored by the programmer. In Fortran such error values are
returned through the parameter list, and hence require an additional parameter.

Notice that the structure of the distributed loop nest is identical to that of the original
version, and that we have made no assumptions about how the grid has been partitioned. The
loop nest is completely serialized; only one processor makes assignments to the distributed
variable q at any one time.

A simple optimization is to bypass execution of CHN_assign statements involving remote
data elements, so that no broadcasts are needed. This requires relaxing the principle of the
replicated program counter. Charon demarcates an environment within which the program
counters are allowed to float by the bracketing statements CHN_begin_local, CHN_end local.
Within the environment broadcasts are suppressed The original structure of the loop nest
is retained by using CHN_point_owner to test whether a point in the grid is assigned to the
calling processor (identified by integer my_rank, supplied by MPI). We only execute the loop
body if the outcome is true. The following code eliminates all redundant synchronizations
and communications:
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CHN_begin_local(dcmp) ;
for (i=1; i<=N; i++) for (j=1; j<=N; j++)
if (CHN_point_owner(dcmp,i,j)==my_rank)
CHN_assign(CHN_address(q_,i,j), CHN_value(q_,i,j) +
CHN_value(rhs_,i,j));
CHN_end_local(dcmp) ;

This version of the loop nest is still much more expensive than a hand-coded message-
passing version, since function calls are made during every iteration. Moreover, all proces-
sors do need to perform the ownership test for all elements of the iteration index space.
The next optimization is obtained by restricting the iteration index space a priori to cells
owned by the calling processor. The inquiry functions CHN_own_total num cells(dcmp) and
CHN_global cell index(dcmp,c) return the total number of cells owned by the calling pro-
cessor, and the sequence number of the c** cell owned by the calling processor within the over-
all decomposition, respectively. CHN_cell_start/end(dcmp,dir,c) returns the start/end
grid indices of cell ¢ in coordinate direction dir.

CHN_begin_local(dcmp) ;
for (c=0; c<CHN_own_total_num_cells(dcmp); c++) {
cg = CHN_global_cell_index(dcmp,c);
for (i=CHN_cell_start(dcmp,0,cg); i<=CHN_cell_end(dcmp,0,cg); i++)
for (j=CHN_cell_start(dcmp,1,cg); j<=CHN_cell_end(dcmp,1,cg); j++)
CHN_assign(CHN_address(q_,i,j,k,m) ,CHN_value(q_,i,j,k,m) +
CHN_value(rhs_,i,j,k,m));

}

CHN_end_local (dcmp) ;

The above code modification has two important implications. The first is that now the
domain decomposition is exposed, although the loop is still valid for any possible decompo-
sition. The second is that the original loop has been reordered. However, due to the lack of
data dependences across iterations of the loop, this reordering is safe.

Notice that point indexing is still with respect to the global grid. The price for this
convenience is the calls to CHN_assign, CHN_address and CHN_value. We now eliminate
these and write the complete final loop as?:

for (c=0; c<CHN_own_total_num_cells(dcmp); c++) {
cg = CHN_global_cell_index(dcmp,c);

for (i=1; i<=CHN_cell_size(dcmp,0,cg); i++)

for (j=1; j<=CHN_cell_size(dcmp,1,cg); j++)
qlcl [i1[j1 += rhs[cl[il[j];

}

3Note that q and rhs have been redimensioned to accommodate the extra cell index c. The multi-index
C arrays in the example are printed only for clarity. In our (and most other) real applications, variable-
size multi-dimensional arrays in C are implemented using macros that compute offsets into one-dimensional
arrays.
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CHN_cell _size is defined as CHN_cell _end — CHN_cell start + 1. Now there is no more
need for the CHN_begin/end_local pair, because there are no calls to the CHN_value function.
We have finally obtained a code fragment that is as efficient as a hand-coded message-passing
version. It is also almost as complicated as that, so it would appear that nothing has been
gained. However, the important difference with other systems is that this optimized code
may be freely combined with high-level unoptimized code fragments that do not contain
any explicit references to the domain decomposition. Moreover, the bookkeeping of the
decomposition does not have to be done by the user.

We now move to the more complex example of operations on arrays involving recurrences.
The serial code represents the forward-elimination phase of the inversion of the x-factor in
our sample ADI program.

for (i=1; i<=N-1; i++) for (j=1; j<=N; j++) {

inv = 1.0/1hs[1][i]1[j]; /* compute pivot reciprocal */
l1hs[2] [i1[j]  *= inv; /* scale matrix row */
rhs[il [J] *= inv; /* " " -y
1hs[11[i+1]1[j] -= 1hs[21[i]1[jI1*1hs[0]1[i+1]1[j]l; /* update next row */
rhs[i+1] [j] -= rhs[i] [j] *1hs [0] [i+1] [j1; /* " " " %/

}

Here the array 1hs represents a family of banded, tri-diagonal matrices, one for each grid
line in the z-direction (i.e. one for each value of j). The first index selects the particular
band of the matrix. Index 0 corresponds to the lower, 1 to the main, and 2 to the upper
diagonal. We again convert using only top-level Charon functions:

for (i=1; i<=N-1; i++) for (j=1; j<=N; j++) {
inv = 1.0/CHN_value(lhs_,1,i,j);
CHN_assign(CHN_address(lhs_,2,i,j), inv*CHN_value(lhs_,2,i,j));
CHN_assign(CHN_address(rhs_,1i,j), inv*CHN_value(rhs_,i,j));
CHN_assign(CHN_address(lhs_,1,i+1,j),CHN_value(lhs_,1,i+1,j) -
CHN_value(lhs_,2,i,j)*CHN_value(lhs_,0,i+1,j));
CHN_assign(CHN_address(rhs_,i+1,j), CHN_value(rhs_,i+1,j) -
CHN_value(rhs_,i,j) *CHN_value(lhs_,0,i+1,j));
}

Notice again that in the transformed code fragment no influence of the domain decomposition
is visible. The situation changes when we start to optimize. First assume that the grid is
partitioned in a slicewise fashion, such that all points on grid lines in the i-direction are within
the same cell, and that each processor receives one such slice (uni-partition scheme). The tri-
diagonal systems can be solved independently by all processors, without any communication.
Hence, the first optimization is again obtained by using the CHN_begin/end_local pair.
Skipping a few steps, we easily arrive at the following efficient code:

cg = CHN_global_cell_index(dcmp,0);

for (i=1; i<=N-1; i++) for (j=1; j<=CHN_cell_size(dcmp,0,cg); j++) {
inv = 1.0/1hs[11[i1[3]1;
1hs[2] [i] [j] *= inv;
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rhs[i] [j] *= inv;
1hs[1]1[i+1]1[j] -= 1hs[2][i]l[j1*1hs[0] [i+1][j];
rhs[i+1][j] -= rhs[i][j]  *lhs[0][i+1]1[j];

}

The problem becomes more interesting when the grid is partitioned differently, for example
because there are conflicting recurrences in the program (e.g. in the y-factor). Now two
approaches are available.

The first is similar to that offered by HPF, namely the CHN_redistribution facility.
Before the iterations start, two different decompositions are defined that are aligned with
the z- and y-grid lines, respectively. The corresponding distributions are rhsx and lhsx,
and rhsy and lhsy, respectively. Switching from z-aligned to y-aligned 1hs distributions,
for example, is established by calling CHN_redistribute (lhsy,lhsx).

The second approach leaves the data distributions intact. We choose the multi-partition
domain decomposition (see, for example, Figure 3, Decomposition 2), which has the special
property that each processor owns a cell in each row and each column of cells of the grid.
Hence, if the solution process advances by rows or columns of cells in the respective coordinate
directions—so as to respect the recurrence relations in these directions—, a perfect load
balance ensues. We note that none of the systems surveyed in Section 2 has the flexibility
of supporting multi-partitioning, but in Charon it is easily defined.

For the inversion of the x-factor we first force the solution algorithm to proceed along
columns of cells, but retain the convenience of implicitly invoked remote gets. The function
CHN_num cells(dcmp,dir) is used to return the number of cells in the decomposition in
coordinate direction dir.

for (ip=0; ip<CHN_num_cells(dcmp,0); ip++)
for (jp=0; jp<CHN_num_cells(dcmp,1); jp++) {
¢ = CHN_cell_index(dcmp,ip,jp);
for (i=CHN_cell_start(dcmp,0,c); i<=min(N-1,CHN_cell_end(dcmp,0,c); i++)
for (j=CHN_cell_start(dcmp,1,c); j<=CHN_cell_end(dcmp,1,c); j++) {
inv = 1.0/CHN_value(lhs_,1,i,j);
CHN_assign(CHN_address(lhs_,2,1i,j), inv*CHN_value(lhs_,2,i,j));
CHN_assign(CHN_address(rhs_,1i,j), inv*CHN_value(rhs_,i,j));
CHN_assign(CHN_address(lhs_,1,i+1,j), CHN_value(lhs_,1,i+1,j)-
CHN_value(lhs_,2,i,j)*CHN_value(lhs_,0,i+1,j));
CHN_assign(CHN_address(rhs_,i+1,j), CHN_value(rhs_,i+1,j)-
CHN_value(rhs_,i,j)* CHN_value(lhs_,0,i+1,j));
}

}

Note that the original loop has been reordered, but that the recurrence relation is re-
spected. Next, the need for frequent implicitly invoked communications must be removed. In
keeping with Charon’s design philosophy (see page 10, item 2), we try to satisfy remote data
demands by aggregated prefetching into the ‘expected’ locations (i.e. ghost points) using
structured communications. As the recurrence has a depth of only one (the half width of the
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discretization stencil), a border of ghost points of size one around each cell suffices. Copy-
ing ghost point values from neighboring cells is done by function CHN_copy_faces, which
is described in the next section. Using values stored at ghost points requires relaxation of
the owner-serves rule. Similarly, writing values into ghost point locations requires relaxation
of the owner-computes rule. The mechanism for causing both rules to be relaxed is the
bracketing pair CHN_begin/end_ghost_access, which takes as arguments the decomposition
dcmp, and the particular cell ¢ whose ghost points should be made accessible. It is as if
temporarily cell ¢ has been enlarged by its ghost points.

Before the loop nest is entered, we copy lhs and rhs values immediately ‘ahead’ of each
column of cells into the ghost point locations (see, for example, Figure 4, bottom right
tableau). Thus, when the loop body is executed for the last column of points in each column
of cells, all its remote data requirements are automatically satisfied. After all rhs and 1hs
ghost point values are written for a whole column of cells, the updated values are transferred
in bulk to the next column using function CHN_copy_ghost_faces, also explained in Section
6.1.1. The following program results:

CHN_copy_faces(rhs_,NONPERIODIC,1,0,LEFT,ALL,ALLVEC,ALLVEC) ;
CHN_copy_faces(lhs_,NONPERIODIC,1,0,LEFT,ALL,ALLVEC,ALLVEC) ;
for (ip=0; ip<CHN_num_cells(dcmp,0); ip++) {
for (jp=0; jp<CHN_num_cells(dcmp,1); jp++) {
¢ = CHN_cell_index(dcmp,ip,jp);
CHN_begin_ghost_access(dcmp,c) ;
for (i=CHN_cell_start(dcmp,0,c); i<=min(N-1,CHN_cell_end(dcmp,0,c); i++)
for (j=CHN_cell_start(dcmp,1,c); j<=CHN_cell_end(dcmp,1,c; j++) {
inv = 1.0/CHN_value(lhs_,1,i,j);
CHN_assign(CHN_address(lhs_,2,1i,j), inv*CHN_value(lhs_,2,i,j));
CHN_assign(CHN_address(rhs_,i,j), inv*CHN_value(rhs_,i,j));
CHN_assign(CHN_address(lhs_,1,i+1,j), CHN_value(lhs_,1,i+1,j)-
CHN_value(lhs_,2,i,j)*CHN_value(lhs_,0,i+1,j));
CHN_assign(CHN_address(rhs_,i+1,j), CHN_value(rhs_,i+1,j)-
CHN_value(rhs_,i,j)* CHN_value(lhs_,0,i+1,j));
}

CHN_end_ghost_access(dcmp,c) ;
}
CHN_copy_ghost_faces (1hs_,NONPERIODIC,1,0,RIGHT,ip,ALLVEC,ALLVEC);
CHN_copy_ghost_faces (rhs_,NONPERIODIC,1,0,RIGHT,ip,ALLVEC,ALLVEC) ;

Due to the prefetching, this loop structure no longer requires the implicitly invoked commu-
nications. Consequently, we can relax the principle of the simulated single program counter
and let each processor execute only its own part of the loop, using the inquiry function
CHN_cell_owner and the CHN_begin_/end_local pair.

The resulting program produces very good performance for a multi-partition decomposi-
tion (see Section 6.2), but suffers from severe load imbalance when applied to a uni-partition
decomposition. The interested reader is referred to [51] for an explanation of how to pipeline
the above code for improved load balance on uni-partition decompositions.
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ddd e e e f f f dddedleeefelf f f
+i direction, second cut —i direction, all cuts
A a a bbb bfccc a aalb bbb c CCC
a a a bbb bijccec a a alb b b blc ccec
a a a bbb blccc aaalb b b blc ccc
d dd e ee eff f d d dje eeef f T f
ddd eee eff f f d d d|e eeelf f f f
kddd e e e elf f f \ddde eecelf f f f

Figure 4: Applications of copy_faces(_all) to a distributed array.

6.1.1 Copying ghost point values
Syntax of face copy functions:

int CHN_copy_(ghost_)faces(int distribution, int periodicity, int thickness,
int dir, int side, int cut, int *start, int *end);
int CHN_copy_(ghost_)faces_all(int distribution, int periodicity,
int thickness, int shape);

CHN_copy_faces copies values from the outermost ‘layers’ of cells to the corresponding
ghost points of adjacent cells. Thickness refers to the number of layers to be copied.
Copying takes place to neighboring cells in the dir® coordinate direction. The value of
side determines if the positive (RIGHT) or negative (LEFT) coordinate direction is chosen, or
both (BOTH_SIDES). Cut specifies the sequence number of the cut in the coordinate direction
defined by dir across which the copy operation is to take place. Setting cut equal to ALL
selects all cuts simultaneously (if periodicity is set to PERIODIC, copying wraps around
the grid). Additionally, we may restrict the copying to a subset of interface points. Vectors
start and end indicate, for each coordinate direction other than that normal to the face
to be copied, the start and end coordinates of the points of that subset with respect to
the global grid. Alternatively, use ALL for the starting index if all points along the cut are
to be copied. In the code fragment above we predefine the useful vector ALLVEC[2] to be
{ALL,ALL}.

Often it will be useful to copy face values at all cuts in all directions, especially in the
case of explicit methods, where all off-cell information can be fetched beforehand. For this
purpose CHN_copy_faces_all is provided. It takes as an argument the stencil shape, which
can have the values BOX or STAR (see e.g. [5]). The STAR shape ignores diagonal values and
only copies between strongly connected cells. BOX also copies values to weakly connected
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cells. Figure 4 shows several different applications of the CHN_copy_faces(_all) routines.
CHN_copy_ghost_faces is similar to CHN_copy_faces, but copies values from ghost points to
points properly owned by neighboring cells.

Both types of copy functions are data-parallel, in principle; all processors may participate,
but only operate on the data that they own. If a processor is responsible for neither sending
nor receiving, it can safely skip the copy call. The result of copy operations is independent of
the number of processors involved, but depends only on the number and lay-out of the cells.
This is true for all Charon operations defined so far; distributed programs can be simulated,
tested and debugged, to a large extent, while using only a single processor. One may even
use Charon exclusively to obtain blocked uniprocessor code that optimizes data locality.

Systems like KeLP and PETSc also provide copy utilities, but these are limited to the
equivalents of CHN_copy_faces_all, and hence do not support data dependencies of the type
described in Section 6.1.

6.2 Scalar Penta-diagonal NAS Parallel Benchmark

We use the techniques described in Section 6.1 to distribute and parallelize the serial version
of the Scalar Penta-diagonal (SP) NAS Parallel Benchmark program (Fortran 77). The
code is significantly more complex than the simple example of the scalar tri-diagonal ADI
problem, and some preparation is needed to apply Charon conveniently.

First, we define for all 3D arrays two distributions. One is associated with the multi-
partition decomposition, and the other is associated with the degenerate solo-decomposition,
consisting of a single cell of the size of the whole grid. Subsequently, we compose two simple
subroutines (named to_solo and to_distributed), which map all distributed arrays to the
single cell on one processor, and vice versa. Mapping between distributions takes place with
a single call to CHN_redistribute. The significance of the two mapping routines is that
they allow us to distribute and parallelize a single subroutine, loop, or even statement, while
keeping all the rest of the code completely unchanged. Two serial segments of the code can
be connected by the following sequence:

call to_distributed
distributed code ( either Charon or otherwise)
call to_solo

This is especially important when the code is large, or when the invocation of top-level
Charon functions would generate so much communication that distributing the whole pro-
gram at once would lead to unacceptably long run times.

A second convenient device is the definition of customized functions that are abbreviations
for Charon operations. For example, we may define the following functions (1hs_ is assumed
contained in the include file my_Charon_pars.h):

subroutine lhsassign(i,j,k,m, value)

include ’my_Charon_pars.h’

integer i,j,k,m, ignore_error

double precision value

call CHN_assign(CHN_address(lhs_,i,j,k,m),value, ignore_error)
return
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end

double precision function lhsval(i,j,k,m)

include ’my_Charon_pars.h’

integer i,j.,k,m

lhsval = CHN_double_precision_value(lhs_,i,j,k,m)
return

end

This allows us to convert the serial statement

lhs(il,j,k,n+3) = 1lhs(il,j,k,n+3) -
> lhs(il,j,k,n+2)*1hs(i,j,k,n+4)

into the relatively terse

call lhsassign(il,j,k,n+3,lhsval(il,j,k,n+3) -
> lhsval(il,j,k,n+2)*1lhsval(i,j,k,n+4))

Finally, it is also convenient to store certain frequently used parameters such as the begin
and end indices of cells, instead of using the full names of Charon access functions each time.

With these preparations the parallelization of SP from the serial code distributed by the
NAS Parallel Benchmark Group was a fairly simple process, which moved in small steps while
maintaining program correctness all the time. The converted codes grew from an original
3072 lines to 3663 lines, which is a modest increase considering the logical complexity of the
multi-partition decomposition.

Explicit Charon communications were necessary only in four routines, namely that used
for computing the residuals at the beginning of each time step (CHN_copy_faces_all, and
those used to invert the three factors (CHN_copy(_ghost) _faces). Since SP solves a system
of partial differential equations, the 1hs and rhs arrays are more complex than those in
Section 6.1; they have 15 and 5 values per grid point, respectively. Moreover, SP inverts
penta-diagonal matrices, as opposed to the tri-diagonal matrices in Section 6.1, so ghost
point borders of thickness two are required to accommodate prefetching.

Per cell interface point and per factor a total of 90 double precision values are copied,
namely two rows of 1hs and rhs before entering the forward elimination loop nest of the
factor inversion (2% 15+ 2% 5 = 40 values), two rows of each during the advancement of the
forward elimination (40 values), and two rows of rhs (10 values) during the advancement of
the backsubstitution. By comparison, the hand-coded MPI version provided by NAS copies
only 32 values per interface point. This significant difference is due to two reasons. The
first is that the present version of Charon only allows copying of all tensor components of a
distributed array, whereas only the upper diagonal element of 1hs need to be passed to the
next layer of cells in the forward elimination phase. The second reason is that the technique
described in Section 6.1 insists on executing the assignments from the serial code in the
same order for all points of each cell owned by each processor. But if we change the code
only very little, namely by letting each loop over a cell start at the first ghost point instead
of at the first properly owned point of the cell, we can avoid the advance copying of 1hs
and rhs before entering the loop nest altogether, thus saving 40 double precision values per
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Table 1: Performance (total Mflops/s) of NPB SP code on Origin 2000, parallelized using

Charon
Standard comm. Modified comm.
# procs | Mflops/s | speedup || Mflops/s | speedup
1 61.2 1 61.2 1
4 172.2 2.81 186.9 3.05
16 713.9 11.5 916.3 15.0
64 1952. 31.9 2580. 42.2

interface point. This technique requires some duplication of computation among successive
cells, but, as is often the case in parallel computing, this trade-off between computation and
communication pays off significantly.

In Table 1 we show the results of running the SP code on 1, 4, 16, and 64 processors
of an SGI Origin 2000 system with 250MHz nodes running Irix 6.5 SE MR. The column
named ‘Modified comm.’ shows the effect of reducing the communication cost to 50 values
per interface points, compared to the 90 interface values for ‘Standard comm.’

The disproportionally large performance increase when going from 4 to 16 processors is
most likely due to an improvement in cache performance caused by the decreasing size of
the data set per processor. It follows from the table that with relatively little effort a rather
well-performing parallel version of a non-trivial program can be obtained. Further tuning
is possible, for example by storing upper diagonal elements of 1hs in dedicated arrays just
before the face copy, so that only the minimum amount of data is communicated.

7 Conclusions and future work

We have excerpted the Charon toolkit for incremental parallelization of scientific programs
based on structured grids. The library allows for quick and convenient development of par-
allel code, and provides a mechanism to continually check correctness of the program under
development. Tools are available to customize data distributions, but the most common
useful distributions are preprogrammed. The normal progression of parallel program de-
velopment through Charon involves a gradual replacement of relatively inefficient high-level
calls with fast-performing lower level constructs, possibly including explicit message passing.
However, high and low level calls can always be mixed, which is especially useful when adding
new features with complicated data dependencies to a previously tuned code. Charon pro-
grams tend to be shorter and easier to read and maintain than traditional message-passing
programs, due to the encapsulation of domain decomposition details. Nonetheless, the li-
brary allows the user complete control over memory usage and lay-out. Performance of the
library for the NAS Parallel Benchmark SP code is good.

The two main disadvantages of Charon are that some hand-coding is required, and that
the user must have some knowledge of the program structure at hand.

Planned future extensions are a facility for copying only parts of the tensor components of
distributed arrays, the implementation of a parallel /O function, and facilities for generalized
distributions that support legacy code techniques like overindexing (common when creating
long loops for vector machines) and lower-dimensional work arrays and index swaps (common
when attempting to improve data locality).
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